Spectral Geometry Of The Laplacian

اذهب الى الأسفل

Spectral Geometry Of The Laplacian

مُساهمة من طرف aRET في الخميس فبراير 15, 2018 1:11 am

Spectral Geometry Of The Laplacian: Spectral Analysis And Differential Geometry Of The Laplacian
World Scientific | English | 2017 | ISBN-10: 9813109084 | 312 pages | PDF | 2.42 mb
by Hajime Urakawa (Author)

The totality of the eigenvalues of the Laplacian of a compact Riemannian manifold is called the spectrum. We describe how the spectrum determines a Riemannian manifold. The continuity of the eigenvalue of the Laplacian, Cheeger and Yau's estimate of the first eigenvalue, the Lichnerowicz-Obata's theorem on the first eigenvalue, the Cheng's estimates of the kth eigenvalues, and Payne-Polya-Weinberger's inequality of the Dirichlet eigenvalue of the Laplacian are also described. Then, the theorem of Colin de Verdier, that is, the spectrum determines the totality of all the lengths of closed geodesics is described. We give the V Guillemin and D Kazhdan's theorem which determines the Riemannian manifold of negative curvature.
(Buy premium account for maximum speed and resuming ability)








عدد المساهمات : 436242
تاريخ التسجيل : 02/09/2016

معاينة صفحة البيانات الشخصي للعضو

الرجوع الى أعلى الصفحة اذهب الى الأسفل

الرجوع الى أعلى الصفحة

صلاحيات هذا المنتدى:
لاتستطيع الرد على المواضيع في هذا المنتدى