Learning Vector Space Models with SpaCy

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل

Learning Vector Space Models with SpaCy

مُساهمة من طرف aRET في الجمعة ديسمبر 08, 2017 11:31 am

Learning Vector Space Models with SpaCy
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 32M | 120 MB
Genre: eLearning | Language: English

Information representation is a fundamental aspect of computational linguistics and learning from unstructured data. This course explores vector space models, how they're used to represent the meaning of words and documents, and how to create them using Python-based spaCy. You'll learn about several types of vector space models, how they relate to each other, and how to determine which model is best for natural language processing applications like information retrieval, indexing, and relevancy rankings.
The course begins with a look at various encodings of sparse document-term matrices, moves on to dense vector representations that need to be learned, touches on latent semantic analysis, and finishes with an exploration of representation learning from neural network models with a focus on word2vec and Gensim. To get the most out of this course, learners should have intermediate level Python skills.
Understand how and why vector models are used in natural language processing
Discover the distributional hypothesis and its use in word and document vectors
Explore term-document tf-idf, latent semantic analysis, and neural embedding models
Gain experience integrating neural embedding models with spaCy
(Buy premium account for maximum speed and resuming ability)




عدد المساهمات : 389211
تاريخ التسجيل : 02/09/2016

معاينة صفحة البيانات الشخصي للعضو

الرجوع الى أعلى الصفحة اذهب الى الأسفل

استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة

- مواضيع مماثلة

صلاحيات هذا المنتدى:
لاتستطيع الرد على المواضيع في هذا المنتدى